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Abstract: The X5Learn platform hosts thousands of learning resources in different formats. Most 

resources are in video, audio or PDF formats which cannot be searched directly. Therefore, search 

engines have to rely on computer-generated, inherently noisy transcripts; i.e., they contain tran-

scription errors. We tested different search engine implementations on a relevance-labelled dataset 

of podcasts from Spotify. This project aims to demonstrate the feasibility of implementing such a 

search engine in Elasticsearch and if some  “classic” algorithms perform better than others while 

also comparing this with some state-of-the-art Learn-To-Rank models. 
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Introduction 

This project aims to build a search engine to retrieve relevant documents for noisy 

data. This “noise” comes from the fact that some documents from the X5Learn database 

are in PDF or video format. As they need to be transcribed into text, some errors can ap-

pear due to the imperfection of the transcription algorithms. The noisy nature of these 

documents creates several problems for searching, especially for names and domain-

specific words which are often wrongly transcribed. To find a search algorithm, we 

compare different techniques using nDCG on a dataset with judgement lists from Spoti-

fy. How will different algorithms perform with this type of data? We tried to compare 

the efficiency of BM25, Dirichlet Smoothing, and LambdaMart with nDCG@5 and 

nDCG@10. We also try to get an idea of the efficiency of stemming by comparing these 

algorithms with and without it. 

 

 

 

I – Background and dataset 

II.1. Background 

Search algorithms are a family of algorithms that involve a search problem, usually to 

retrieve information saved in a data structure. That is to say; given a query q and a set of 

documents d, a search algorithm returns a list of documents from d ordered by relevance 

to q. In this paper, we are interested in search algorithms for web search engines. With 

the increase of internet usage, search engines like Google or Bing are used by millions of 

people worldwide each day. 

Citation: Widmayer, T.; Leelawat, 

T.; Lefeuve, V. Search algorithms for 

spoken passage retrieval on the 

Spotify dataset, 2022  

 

Copyright: © 2022 by the authors. 

Submitted for possible open access 

publication under the terms and 

conditions of the Creative Commons 

Attribution (CC BY) license 

(https://creativecommons.org/license

s/by/4.0/). 



Search algorithms for spoken passage retrieval on the Spotify dataset. 2 of 5 
 

 

Our project aimed to build a search engine for the X5Learn project, an open educational ressources (OER) database 

that comprises content from different sites in one web application [2]. Some documents are in non-textual forms, like 

video lectures and podcasts. This makes search more difficult as these documents will have to be transcribed before 

searching, thus containing transcription errors called noise.  

In this report, we are interested in building a search engine that retrieves content from The Spotify Podcast Dataset [7]. 

As this podcast contains transcripts from podcasts, it also contains noise. Thus, this implementation results can help 

us build the search engine for X5GON’s OER platform.  

 

II.2. Related work 

Related works include 100,000 Podcasts: A spoken English Document Corpus, which uses the same dataset [6]. The 

method they use is to implement standard retrieval models (BM25 and Query Likelihood (QL, a Language Model) 

with Dirichlet Smoothing), with the RM3 relevance model using Pyserini [10]. This is built with the Lucene search 

Library [4], and stemming is added with the Porter Stemmer. They then compare the accuracy of the different 

algorithms using nDCG@10 and nDCG@5. 

This project tries to follow a similar methodology to the aforementionned paper, while using new technologies and 

building libraries to allow developpers to test search algorithms on their datasets. Our approach is  pretty similar. 

However, we use newer technologies like ElasticSearch in order to make the implementation easier. We also build on 

top of that and try Learn-to-rank (LTR) models for this task. LTR models are retrieval models which make use of 

machine learning. 

 

II.3. Dataset 

The dataset we use is The Spotify Podcast Dataset [7]. It is a sample of 105,360 podcasts episodes from the platform 

Spotify, coupled with relevant metadata. These episodes are transcribed using Google’s cloud Text to Speech API [1]. 

The dataset includes 2 judgement lists: one called training, which included 8 queries, and one for testing. We decided 

to save the training judgement list for creating the LTR models. 

We compiled the dataset into one CSV file with all relevant information. Due to performance and time constraints, we 

decided to only use a random subset of the dataset which includes the documents included in the training and testing 

judgement lists. The size of this subset is around 166,000, out of the total ~3M documents. A document, in our case, is 

a two-minute extract of a transcript with one minute overlap. 

 

II – Implementation of the algorithms 

This project is built using Python and ElasticSearch 7.11.2. To complement this paper, we created a python package1 

which allows to implement these algorithms and test them. In this paper, we build and compare the following algo-

rithms: BM25, Language Model, and LambdaMart. We also implemented stemming to the search algorithms. 

 

II.1. Classic algorithms 

The classic search algorithms we decided to implement are Okapi BM25 [12] and a Language model with Dirichlet 

Smoothing [15]. These two algorithms are natively built-in in ElasticSearch. 

We used the following parameters for the algorithms: 

- K1 = 0.9, b=0.4 for BM25 

- μ = 1000 for Dirichlet Smoothing 

These parameters are the same as in the paper “100,000 Podcasts: A Spoken English Document Corpus” [6] in order to 

make results as comparable as possible. 
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II.2. LambdaMart and LTR 

In order to build a LambdaMart model, we used Ranklib and a plugin for ElasticSearch called ElasticSearch LTR. 

We built the models using the following features: 
Table 1. Feature list for the LTR models. [9][13] 

Name Description 

BM25_Score Okapi BM25 score for the document on the query. (with and without stemming) 

sum_df the direct document frequency for a term  

sum_idf 1 divided by the number of documents containing the query term summed for each term. 

sum_ttf the total term frequency for the term across all documents 

Sum_tf Sum of counts of each query term in the document 

min_tf Minimum of counts of each query term in the document  

max_tf Maximum of counts of each query term in the document 

Min_idf 1 divided by the number of documents containing the query term (minimum) 

Max_idf 1 divided by the number of documents containing the query term (maximum) 

Avg_tf Average of counts of each query term in the document 

Avg_idf 1 divided by the number of documents containing the query term (averaged for each  term) 

Stddev_tf Standard deviation of counts of each query term in the document 

Stddev_idf 1 divided by the number of documents containing the query term (Stddev of each term idf) 

 

We then constructed the training file using the judgement list and adding the feature score for each (query, document) 

pair. In order to add more documents and improve the model, we added the document relevant to the other queries to 

each query, judging them as having 0 relevance.  

We then trained two LambdaMart models with the default RankLib parameters: one with, and one without stemming 

in the BM25_Score feature. The model trained with stemming will be used as a comparison and with stemming on top, 

as using stemming on a model trained without it could decrease performance. We then incorporated both models into 

Elasticsearch. 

 

To help with training and uploading models to Elasticsearch, we created a Python module1 

 

II.3. Stemming 

Stemming is “a computational procedure which reduces all words with the same root (or, if prefixes are left 

untouched, the same stem) to a common form, usually by stripping each word of its derivational and inflectional 

suffixes.”[11] We decided to compare the efficiency of these different algorithms with and without it. 

In order to add stemming to our search engine, we used Elasticsearch’s functionality [3]. As all of the queries in the 

dataset are in English, we used ElasticSearch’s English stemmer. It is added each time the engine is loaded with data. 

 

 

 
1  The module is available on github : https://github.com/COMP0016-IR-Noisy-documents/IR_RankingAlgorithms  

https://github.com/COMP0016-IR-Noisy-documents/IR_RankingAlgorithms
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III – Testing & results 

III.1. Testing methodology 

In order to test the efficiency of these algorithms, we used the judgement list given in the dataset. We chose to use 

nDCG@10 and nDCG@5 as metrics for accuracy, which is given by: 

nDCG𝑘  =  
𝐷𝐶𝐺𝑘

𝐼𝐷𝐶𝐺𝑘
  ,where: 

𝐷𝐶𝐺𝑘 =  ∑
𝑟𝑒𝑙𝑖

𝑙𝑜𝑔2(𝑖+1)

𝑘
𝑖=1 , and 

 𝐼𝐷𝐶𝐺𝑘 =  ∑
𝑟𝑒𝑙𝑖

𝑙𝑜𝑔2(𝑖+1)

|𝑟𝑒𝑙𝑘|
𝑖=1  

Where k= 5 or 10, reli is the relevance score of document I on the judgement list, and relk represents the list of relevant 

documents (ordered by their relevance) in the corpus up to position k.  

To perform the testing, we used Elasticsearch’s ranking evaluation module [16], which allows getting the nDCG@k 

scores for a set of queries given a list of (query, document, score) triples. We used that method to get nDCG@10 and 

nDCG@5 scores for all of the mentioned algorithms with and without stemming, for all of the queries in the judge-

ment list. 

III.2. Results 

Using the methodology described above, we ran the tests and compiled the results for all queries in the testing 

judgement list. 

 

Table 2. nDCG scores for different search algorithms. 

Algorithm nDCG@5 nDCG@10 

BM25 0.290 0.302 

BM25 + Stemming 0.316 0.326 

QL 0.289 0.312  

QL + Stemming 0.304 0.311 

LambdaMart 0.295 0.324 

LambdaMart + Stemming 0.320 0.327 

 

III.3. Analysis 

As we can see, algorithms with stemming consistently perform better than their counterparts. It also seems like the 

best performing retrieval algorithm is LambdaMart with stemming. However, using Wilcoxon rank-signed tests [14], 

we found that the algorithms are not distinguishable, as none of the results is statistically significant. This lack of dif-

ference could be due to the limitations of the bag-of-words strategy [6]. We cannot reject the hypothesis that they all 

follow the same distribution. 

Some queries suffer a lot from the noise created by automatic speech transcription. For example, the query Fauci inter-

view consistently gets an nDCG score of 0 for all of the algorithms. 

Using a larger sample of the dataset could make the results more precise. 
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Conclusions and discussion 

We built a search engine using ElasticSearch.  Using this technology proved practical and has many valuable func-

tionalities for information retrieval built-in. 

Unfortunately, our test results are not significant and cannot help us to draw any definite conclusion. Thus, after read-

ing more literature on search for information retrieval [5], we decided to implement LM with Dirichlet Smoothing to 

the X5Learn web application. We also considered the fact that using LambdaMart on a different dataset would signifi-

cantly decrease its performance.  

Future work could include improving the LambdaMart models. Indeed, some terms are often wrongly transcribed 

(usually names and complicated words), and adding the BM25 score with  fuzziness to the list of features could help 

tackle that. Furthermore, using a larger dataset like the TREC datasets [5] would help gather significant knowledge 

about which retrieval technique is more accurate. If we were to decide to implement LambdaMart to the web applica-

tion, we could make use of user data collection to build a judgement list for that dataset.  

Overall, we are satisfied with our implementation, even though some improvements could have been done if we had 

more time. 

 

References 

 

[1] “Google Cloud Speech-to-T.” [Online]. Available: https://cloud.google.com/speech-to-text. 

[2] “x5learn.org.” [Online]. Available: https://x5learn.org/. 

[3] “stemming @ www.elastic.co.” [Online]. Available: 

https://www.elastic.co/guide/en/elasticsearch/reference/current/stemming.html. 

[4] Apache, “Lucene.” [Online]. Available: http://lucene.apache.org/. 

[5] G. Bennett, F. Scholer, and A. Uitdenbogerd, A Comparative Study of Probabalistic and Language Models for Infor-

mation Retrieval. 2008. 

[6] A. Clifton, M. Eskevich, G. J. F. Jones, B. Carterette, and R. Jones, “100 , 000 Podcasts : A Spoken English Document 

Corpus,” pp. 5903–5917, 2020. 

[7] A. Clifton et al., “The Spotify Podcast Dataset,” 2020, [Online]. Available: http://arxiv.org/abs/2004.04270. 

[8] D. Davies, “How Search Engine Algorithms Work: Everything You Need to Know,” Search Engine J., 2020, [Online]. 

Available: https://www.searchenginejournal.com/search-engines/algorithms/#whysearc. 

[9] X. Han and S. Lei, “Feature Selection and Model Comparison on Microsoft Learning-to-Rank Data Sets,” vol. 231, no. 

Fall, 2018, [Online]. Available: http://arxiv.org/abs/1803.05127. 

[10] lintool, “PySerini @ pypi.org.” https://pypi.org/project/pyserini/. 

[11] J. B. Lovins, “Development of a stemming algorithm,” Mech. Transl. Comput. Linguist., vol. 11, pp. 22–31, 1968. 

[12] S. E. Robertson and K. Sparck Jones, “Relevance Weighting of Search Terms,” in Document Retrieval Systems, GBR: 

Taylor Graham Publishing, 1988, pp. 143–160. 

[13] D. Turnbull, E. Berhardson, D. Causse, and D. Worley, “Elasticsearch Learning to Rank Documentation,” 2019. [Online]. 

Available: https://media.readthedocs.org/pdf/elasticsearch-learning-to-rank/latest/elasticsearch-learning-to-rank.pdf. 

[14] W. J. Conover, “Practical Nonparametric Statistics, 3rd Edition.” 

[15] C. Zhai and J. Lafferty, “A Study of Smoothing Methods for Language Models Applied to Ad Hoc Information Retrieval,” 

SIGIR Forum, vol. 51, no. 2, pp. 268–276, 2017, doi: 10.1145/3130348.3130377.  
[16] “Google Cloud Speech-to-T.” [Online]. Available: https://cloud.google.com/speech-to-text. 


